What processes control ice nucleation and its
impact on ice-containing clouds ?
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Challenges

* lce nucleation processes involving aerosols are key to the
formation and properties of cirrus and mixed-phase
clouds, and thereby can impact both the atmospheric
radiative energy distribution and precipitation processes.

* Compared to droplet formation in warm clouds, ice
nucleation is more complicated and much less

understood.

* Large uncertainties exist in the representation of ice
nucleation processes in climate models, and aerosol
effects on mixed-phase and cirrus clouds.
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How ice crystals are formed?

Multiple Ice Nucleation Mechanisms
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Modes of ice nucleation

No clouds
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particles
= CCN

No clouds
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particles

=>IN (ice nuclei)

Except freezing
of water droplets
at -36 °C
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How does ice nucleation depend on aerosol properties,
environmental conditions, and time?

What are the specific contributions of mineral dust, soot,
organics, and biological aerosols toward ice nucleation
and IN variability?

What measurement approaches are needed to
characterize all relevant ice nucleation processes?

Can we reach IN-ice crystal closure at current stages of IN
and ice crystal measurement? If not, what areas are

needed for improvement?

What are the roles of ice nucleation on cloud and
precipitation properties and climate forcing?
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Q1. How does ice nucleation depend on aerosol
properties, environmental conditions, and time?

» Aerosol properties
- Size, morphology, composition, surface coating

* Environmental conditions
- Temperature,
- Relative humidity
- Updraft (cooling rate)

* Time dependence
- Stochastic vs. singular for heterogeneous nucleation

o
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Ice nucleation in mixed-phase clouds
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Immersion freezing based on aerosol surface active site
density
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Immersion freezing efficiency depends upon the aerosol
surface area and chemistry.

In general, for the same aerosol size ice nucleating \z/

properties depend upon the aerosol chemistry.
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Ice nucleation in mixed-phase clouds: immersion
vs. deposition vs. contact mode
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Ice nucleation in cirrus clouds (T< -37C):
competition of homogeneous (on sulfate) and
heterogeneous (immersion & deposition) modes
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Role of vertical updraft (w):

(1) Determining supersaturation in clouds and thus relative
importance of homogeneous vs. heterogeneous nucleation

(2) Determining sensitivity of Ni to aerosol number Na for %
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Ice nucleation in cirrus clouds:
competition of homogeneous and heterogeneous
(immersion & deposition) modes
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Q2. What are the specific contributions of coated/
uncoated mineral dust, volcanic ash, soot, organics, and
biological aerosols toward ice nucleation and IN
variability?

« Characteristics of nucleation efficiency of aerosol types
- onset T and RH, surface active site density

- nucleation mode (e.g., immersion, deposition)

 Effect of surface coating

- composition dependency

- coating thickness

- change of nucleation mode

7
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Types of aerosol as ice nuclei

Smoke: prescribed  Dust: Saharan PBAP (primary Seawater spray:
burns (Longleaf Aerosol Layer (SAL) biological aerosol CAICE wave
Pine), Newton, GA particles) dominant in channel, Scripps/

large aerosol, UCSD, CA
Amazonian Rainforest

Industry Pollution: Aircraft soot Volcanic ash Pacific Northvest
Lead Oth e |"s7 NATIONAL LABORATORY
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Ice Nuclei

» How do we know what an ice nucleus is?
» From laboratory studies of nucleation rates/thresholds

» From atmospheric measurements of ‘residuals’ after
crystals are evaporated

DeMott et al 2003, PNAS
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Onset for heterogeneous ice nucleation
1.8 [ T

Deposition/condensation nucleation black carbon
Immersion freezing black carbon

Deposition nucleation ammonium sulfate
Deposition/condensation nucleation organics
Immersion freezing organics

Deposition/condensation nucleation submicron dust
Immersion freezing submicron dust
Deposition/condensation nucleation supermicron dust
Deposition/condensation nucleation bioaerosols
Immersion freezing bioaerosols
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Immersion mode IN contribution
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Considerable scatter can be observed among the freezing efficiency

of various aerosols.

Mineral dust dominates the potential IN fraction, while bacterial IN

concentration is low but effective at warmer temperatures. \gg*/

Pacific Northwest
NATIONAL LABORATORY

Murray et al. 2012



:

m
3

—_
m
=
N

1.E-08

1.E-09

1.E-10

Immersion freezing rate [cm'3 s"]

1.E-12

1.E-14

Simulated
freezing rate

200f oI

4000

Uppermost estimate:
_. i Mean contribution of
1 10000 4. Tk _ - 0.6% to

90S 455 EQ 45N 90N 90S 458 EQ 45N gon  global ice nucleation

PBAP-MAX

200 |
400 [
600

800

1000 el 4 |
90S 458 EQ 45N 90N

Generous assumptions
about IN activity

(100% Ps. syr.-like, \g/

higher emissions) Pacific Northwest

NATIONAL LABORATORY

CAM-Oslo, Hoose et al, ERL 2010



Ur}coated Soot
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Soot are poor IN in the deposition nucleation mode (left of line), but th&geific Northwest
can provide the surfaces to condense the water at colder conditions.
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IN fraction

Understanding the effect of internal mixing
(surface coating) on ice nucleation efficiency

deposition immersion
Deposition- | Immersion- Droplets
regime regime
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\
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Water relative humidity (%)

Sullivan et al., ACP (2010)
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Effect of different types of aerosols on mixed-phase
clouds
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Q3. What measurement approaches are needed to
characterize all relevant ice nucleation processes?

7
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Needs and issues for using different IN
measurement methods

» Atmospheric IN activity spans many orders of magnitude
(see earlier). Access to the warm temperature regime of
very low IN concentrations requires different methods
than are easily used at lower temperatures.

- Need to concentrate air samples or collect large
volumes for offline analysis.

» Different methods emphasize different mechanisms,
which is needed.

» All have characteristic measurement times and potential
artifacts.

~7
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A host of representative IN measurement
methods

coud chombers i el -Cloud chambers
Cloud Chamber
C ¥ ) Fo=fig=7 [\10t084,000L _
omol | U -Continuous flow
v chambers
s33.50: -Particle/droplet traps
varieddeteciion -Static chamber for
P particle processing or

optical, acoustic!,

droplet freezing

-Drop freezing arrays
TGDC/ISDC (not shown)

Optical size or
polarization |

detection
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Use clouds to measure IN: e.g., ICE-L
methods

Sample ambient \
aerosols upstream -
IN

=1 Size distribution

2= | Aerosol mass spec

& sP-2

SEM/TEM /
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Q4. Can we reach IN - ice crystal closure at current
stages of IN and ice crystal measurement? If not, what
areas are needed for improvement?

* Inter-consistency between IN and ice crystal numbers in
clouds

- importance of secondary ice formation in some types of
clouds

- role of other cloud processes other than ice nucleation,
e.g., aggregation and sedimentation of ice crystals

Pacific Northwest
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Ice Nucleation and Ice Lifecycle

Ice nucleation Secondary ice formation Ice redistribution/seeding
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Q5. What are the roles of ice nucleation on cloud and
precipitation properties and climate forcing?
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Resilience of persistent Arctic mixed-phase

clouds
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= Drives buoyant production of turbulence

= Forces direct condensation within inversion layer
= Requires minimum amount of cloud liquid water

Surface Layer

* Turbulence and g contributions can be weak or strong
= Sink of atmospheric moisture due to ice precipitation

= Surface type (ocean, ice, land) influences interaction
with cloud

Morrison et al. Nature Geo. (2011)
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Role of ice crystals on Arctic mixed-phase
clouds (ISDAC April 26, 2008)
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Liquid/ice partitioning in single-layer mixed-phase
clouds during ISDAC (April 26)
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Effect of ice nucleation in mixed-phase clouds
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Aerosol indirect effect in warm and mixed-

1st and 2nd
aerosol indirect effects
(warm clouds)

phase clouds
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indirect effect

“Deactivation”
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Cloud albedo
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Aerosol indirect effect iIn warm and mixed-
phase clouds
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* Intercompare existing instruments with different
designs and/or operational principles.

* Explore consistency in interpretation of ice
nucleation data

* Define capabilities/uncertainties for measuring

atmospheric IN concentrations (versus “high signal”
lab data)

- Organize a workshop in the laboratory and field
(as in DeMott et al. 2011)

Pacific Northwest
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A Roadmap

* Laboratory investigation of ice nucleation mechanisms at
process level.

- soot in the immersion mode
- effect of surface coating, including coating thickness

- ice nucleation at cold (T<-60C) and warm (T>-15C)
temperatures

- role of biological aerosol (e.g., from marine source)
- contact freezing

7
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Propose dedicated IOPs on ice nuclei in a specific aerosol
source region (desert, industrial pollution, fire, biological

aerosol, and soot).

Explore other opportunities for ice nuclei measurements in
different locations (e.g., GOAmazon 2014+1); routine IN
measurements at ACRF sites.

Propose an ACRF measurement in Southern Ocean would
be a good place to study glaciation of mixed-phase clouds in

SH storm track region.

Pacific Northwest
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Analysis of current data : ISDAC, M-PACE, SpartiCus, MC3E
Ni, IWC — T, RH, w, aerosol (size, composition)

Process level understanding with cloud resolving models
(CRM) and single column model (SCM) for IOP and ACRF
cases

- examine the roles of ice nucleation and other cloud

processes on ice-containing clouds (Arctic stratus, cirrus and
convective clouds)

Quantify the uncertainties of ice nucleation on ice-containing
clouds and radiative forcing in climate models

Pacific Northwest
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